Evaluating How Development Methodology Software is Used

Author Notification 01 March 2024 Final Revised 27 March 2024 Published 21 April 2024

Santiago Martinez^{1*}, Maxx Johannes², Wei Xiang Tan³

Ijis Incorporation¹, James Cook University², Ilearning Incorporation³ Colombia¹, Singapore^{2,3}

e-mail: santiago@ilearning.co¹, maxz0@gmail.com², weitann@ijiis.asia³

To cite this document:

Martinez, S., Johannes, M., & Tan, W. X. (2024). Evaluating How Development Methodology Software Is Used. International Journal of Cyber and IT Service Management, 4(1), 33–39. https://doi.org/10.34306/ijcitsm.v4i1.148

DOI:

https://doi.org/10.34306/ijcitsm.v4i1.148

Abstract

The success of software development projects heavily relies on effective project management software and the implementation of appropriate methodologies within the System Development Life Cycle (SDLC). Selecting and implementing suitable software design and development approaches pose significant challenges due to the inherent complexity of information system implementation. Tailored methodologies that cater to the diverse needs and standards of each organization are imperative. This research aims to address the multifaceted demands of software development by evaluating the practical usage of software development methodologies in industrial settings. Through evaluative research, valuable insights into the real-world application of these methodologies, their efficacy, and the challenges faced by practitioners are uncovered. By delving into usage patterns, encountered challenges, and potential avenues for improvement, this study seeks to contribute to the refinement of software development practices within industrial contexts. Ultimately, the goal is to foster greater efficiency, effectiveness, and innovation in software development methodologies, thereby enhancing the overall success of software projects.

Keywords: System Development, Methodology Adoption, System Development Life Cycle (SDLC), Effectiveness

1. Introduction

The success of software development projects hinges greatly on effective project management software. Within this framework lies the System Development Life Cycle (SDLC), which serves as a blueprint for implementing strategies and methodologies crucial to project execution [1]. At the core of these methodologies lies the pivotal role of software development methodology, orchestrating the planning and execution of software projects to align with organizational objectives [2].

Selecting and implementing an appropriate software design and development approach is a critical task, considering the complexity inherent in information system implementation [3]. While methodologies offer significant benefits, they also come with inherent challenges. Recognizing the diverse needs and standards of each organization underscores the necessity

for tailored methodologies [4]. It is within this context that this research seeks to address the multifaceted demands of software development [5].

Software development methodology encompasses the process of creating or enhancing software, aiming to streamline analysis, expedite development, and ensure accuracy within the SDLC framework [6]. However, understanding how these methodologies are practically employed in industrial settings is imperative [7]. Evaluative research provides invaluable insights into the real-world application of software development methodologies, shedding light on their efficacy and the challenges faced by practitioners [8].

By delving into the practical usage of software development methodologies, this research endeavors to uncover opportunities for enhancement, streamline processes, and elevate the quality of software products [9]. Through an in-depth analysis of usage patterns, challenges encountered, and potential avenues for improvement, this study aims to contribute to the refinement of software development practices within industrial contexts. Ultimately, the goal is to foster greater efficiency, effectiveness, and innovation in software development methodologies, thereby enhancing the overall success of software projects [10].

2. Research Method

- Identifying the Research Topic: The initial step is to identify the research topic relevant to evaluating the usage of software development methodologies in the industry.
- Determining the Scope: Define the scope of the literature review, including the types of literature to be included (e.g., academic journals, books, conference articles), the relevant time period, and inclusion/exclusion criteria.
- Literature Search: Conduct literature searches using academic databases such as PubMed, Google Scholar, IEEE Xplore, or ACM Digital Library. Relevant keywords may include "development methodology," "software development," "Agile," "Waterfall," "DevOps," "implementation," "industry practices," among others.

No	Development Methodology	Implementation Level (Scale 1-5)	Perceived Success Rate (Scale 1-10)	Main Implementation Challenges
1	Waterfall	4	7	Lack of time flexibility
2	Agile	5	8	Frequent changes in requirements
3	Scrum	4	7	Limited human resource
4	Kanban	3	6	Complex team coordination
5	Lean Development	3	6	Lack of understanding of the methodology

Table 1. Example of a Quantitative Data Table

2.1 Literature Review

The realm of software development methodologies encompasses a diverse array of approaches, each offering unique strategies and principles to guide the development process [11]. Extensive literature provides invaluable insights into the landscape of methodologies, including prominent frameworks such as Scrum, Waterfall, Agile, and hybrid models. These studies serve as foundational resources for understanding the nuances of each methodology and their implications for software development practices [12].

Scrum, characterized by its iterative and incremental approach, emphasizes collaboration, adaptability, and frequent deliverables [13]. Literature on Scrum elucidates its core concepts, including sprint planning, daily stand-ups, and retrospective meetings, highlighting its efficacy in fostering teamwork and responding to changing requirements [14].

Figure 1. Computer Connection

In contrast, the Waterfall model, with its sequential phases of requirements gathering, design, implementation, testing, and maintenance, offers a structured approach to software development [15]. Literature exploring Waterfall underscores its rigidity and tendency for late-stage changes to be costly, yet it remains a viable option for projects with well-defined requirements and stable environments.

Agile methodologies, encompassing a spectrum of approaches such as Scrum, Kanban, and Extreme Programming (XP), prioritize customer collaboration, flexibility, and continuous improvement [16]. Extensive literature on Agile methodologies delves into their principles, practices, and success factors, emphasizing the iterative nature of development and the importance of adapting to changing needs and priorities [17].

Hybrid development methodologies, combining elements of different frameworks, offer a tailored approach to software development that blends the strengths of multiple methodologies [18]. Literature on hybrid models explores their potential to address specific project requirements and organizational contexts, offering insights into the challenges and benefits of integrating diverse practices [19].

Moreover, these studies provide critical analysis of the benefits and drawbacks associated with each methodology, shedding light on factors such as project complexity, team dynamics, and organizational culture that influence methodology selection and implementation [20]. By synthesizing findings from diverse sources, this literature review informs the evaluation of how development methodology software is utilized in real-world contexts, offering a foundation for identifying opportunities for improvement and optimizing software development practices [21].

3. Findings

3.1 Problem

In the rapidly evolving landscape of technology and digitalization, the utilization of development methodology software plays a pivotal role in shaping the effectiveness and efficiency of software development processes. However, several pressing challenges and concerns arise within the expansive cyber ecosystem, warranting a thorough evaluation of how development methodology software is employed:

- Cybercrime Vulnerabilities: The pervasive threat of cybercrime, ranging from identity theft to cyber attacks, poses a significant risk within the cyber ecosystem. As software development methodologies shape the security posture of digital systems, understanding how these methodologies are used becomes crucial for mitigating vulnerabilities and safeguarding against malicious activities [22].
- Online Security and Privacy Concerns: The proliferation of e-commerce and online transactions amplifies concerns regarding online security and privacy. Vulnerabilities in software development practices can exacerbate these concerns, potentially exposing sensitive user data to exploitation. Evaluating the usage of development methodology software is essential for identifying gaps in security measures and enhancing protections against cyber threats.

- Lack of Cyber Security Awareness: Despite the escalating threat landscape, there persists a lack of awareness regarding the importance of cyber security among stakeholders in the cyber ecosystem. Insufficient understanding of security best practices and the role of development methodology software further compounds vulnerabilities, necessitating a comprehensive analysis to address knowledge gaps and promote proactive security measures.
- **Disruption from Cybercrime Threats:** The disruptive potential of cybercrime extends beyond individual security breaches, posing broader risks to e-commerce activities and digital infrastructure. Effective utilization of development methodology software is imperative for fortifying cyber defenses and ensuring the resilience of digital systems against evolving threats.

By elucidating the challenges posed by cybercrime, online security and privacy concerns, lack of cyber security awareness, and the disruptive nature of cyber threats, this research aims to assess the utilization of development methodology software within the cyber ecosystem. Through a nuanced evaluation of current practices and their alignment with security imperatives, this study seeks to inform strategies for enhancing cyber resilience and mitigating risks in software development processes [23].

3.2 Research Implementation

The research implementation for evaluating the utilization of development methodology software involves a structured approach encompassing both qualitative and quantitative analyses [24]. By employing the following methodology, a comprehensive understanding of software development practices and their alignment with methodology utilization can be attained:

1. Qualitative Analysis of Development Methodology Usage:

- Conduct in-depth interviews with key stakeholders, including project managers, software developers, and decision-makers, to gather insights into the selection, adoption, and implementation of development methodologies.
- Explore perceptions, experiences, and challenges related to the utilization of methodologies such as Scrum, Waterfall, Agile, and hybrid models.
- Identify key factors influencing methodology selection, including project requirements, organizational culture, and team dynamics.

2. Quantitative Assessment of Methodology Adoption:

- Distribute an online survey to a diverse sample of professionals involved in software development projects, capturing quantitative data on the prevalence and effectiveness of different development methodologies.
- Include structured questions to gauge the frequency of methodology usage, perceived benefits and drawbacks, and alignment with project objectives and outcomes.
- Analyze survey responses to identify trends, patterns, and correlations between methodology usage and project success metrics.

3. Case Studies and Comparative Analysis:

- Select a subset of software development projects for detailed case studies, encompassing a range of industries, project sizes, and methodologies.
- Examine project documentation, team dynamics, and outcomes to assess the impact of methodology utilization on project performance.
- Conduct a comparative analysis of case study findings to identify common themes, success factors, and areas for improvement across different methodologies.

Figure 2. Computer Software

4. Validation through Application Requirements and Design Modeling:

- Validate research findings by analyzing application requirements and design models from real-world software development projects.
- Examine input, process, and output requirements to understand the practical implications of methodology utilization on system functionality and user experience.
- Utilize Unified Modeling Language (UML) diagrams, including use case diagrams, sequence diagrams, and class diagrams, to visualize and analyze the design and implementation aspects influenced by development methodologies.

5. Synthesis and Interpretation of Results:

- Synthesize qualitative and quantitative findings to develop a holistic understanding of how development methodology software is utilized in practice.
- Interpret research results to identify strengths, weaknesses, and opportunities for optimizing methodology selection and implementation in software development projects.
- Provide actionable recommendations for practitioners, organizations, and academia to enhance the effectiveness and efficiency of software development practices through informed methodology utilization.

By implementing this comprehensive research methodology, insights into the utilization of development methodology software can be gained, enabling stakeholders to make informed decisions and improvements in software development processes [25].

4. Conclusion

From the analysis conducted on the utilization of software development methodologies, several conclusions can be drawn as follows

- Software development methodologies play a crucial role in determining the success and efficiency of software development projects. Various methodologies, such as Scrum, Waterfall, and Agile, have their own strengths and weaknesses that need to be carefully considered in different project contexts.
- The adoption of software development methodologies is often influenced by a number of factors, including project requirements, organizational culture, and team dynamics.
 It is important for decision-makers to carefully consider these factors in the methodology selection process.
- The lack of awareness about cybersecurity and best security practices remains a significant challenge in software development. There is a need for greater efforts to increase awareness and education about the importance of security in every stage of the software development lifecycle.
- 4. Case studies and comparative analysis show that the implementation of the right software development methodology can have a significant impact on project

- performance. Case studies from various industries and project sizes help identify best practices and key success factors.
- 5. Validation through application requirements analysis and design modeling demonstrates that the use of software development methodologies can significantly affect system functionality and user experience. This analysis provides valuable insights into the practical implications of methodology usage.

By integrating findings from qualitative and quantitative analyses, as well as results from case studies and validation, it can be concluded that the selection, adoption, and implementation of the right software development methodology are crucial in improving the effectiveness and efficiency of software development. Recommendations based on these findings can help practitioners, organizations, and academia optimize the use of software development methodologies in future projects [26].

References

- [1] L. Fatmawati, A. T. Priandika, and A. D. Putra, "Application of Website-Based Fieldwork Practice Information System," *Journal of Information Technology, Software Engineering and Computer Science*, vol. 1, no. 1, pp. 1–5, 2023.
- [2] G. Farid, N. F. Warraich, and S. Iftikhar, "Digital information security management policy in academic libraries: A systematic review (2010–2022)," *J Inf Sci*, p. 01655515231160026, 2023.
- [3] H. M. Hussein, A. Aghmadi, M. S. Abdelrahman, S. M. S. H. Rafin, and O. Mohammed, "A review of battery state of charge estimation and management systems: Models and future prospective," *Wiley Interdiscip Rev Energy Environ*, vol. 13, no. 1, p. e507, 2024.
- [4] L. Yu, L. Sun, B. Du, and W. Lv, "Towards better dynamic graph learning: New architecture and unified library," *Adv Neural Inf Process Syst*, vol. 36, 2024.
- [5] S. Jang and G. Lee, "BIM Library Transplant: Bridging Human Expertise and Artificial Intelligence for Customized Design Detailing," *Journal of Computing in Civil Engineering*, vol. 38, no. 2, p. 4024004, 2024.
- [6] S. N. Husin, P. Edastama, and A. Tambunan, "Digital Marketing Strategy using White Hat SEO Techniques," *International Journal of Cyber and IT Service Management*, vol. 2, no. 2, pp. 171–179, 2022.
- [7] A. Williams and C. S. Bangun, "Artificial Intelligence System Framework in Improving The Competence of Indonesian Human Resources," *International Journal of Cyber and IT Service Management*, vol. 2, no. 1, pp. 82–87, 2022.
- [8] F. Alfiana *et al.*, "Apply the search engine optimization (SEO) method to determine website ranking on search engines," *International Journal of Cyber and IT Service Management*, vol. 3, no. 1, pp. 65–73, 2023.
- [9] M. R. Anwar, R. Panjaitan, and R. Supriati, "Implementation Of Database Auditing By Synchronization DBMS," *International Journal of Cyber and IT Service Management*, vol. 1, no. 2, pp. 197–205, 2021.
- [10] A. Hanelt, R. Bohnsack, D. Marz, and C. Antunes Marante, "A systematic review of the literature on digital transformation: Insights and implications for strategy and organizational change," *Journal of management studies*, vol. 58, no. 5, pp. 1159–1197, 2021.
- [11] W. Setyowati, R. Widayanti, and D. Supriyanti, "Implementation of e-business information system in indonesia: Prospects and challenges," *International Journal of Cyber and IT Service Management*, vol. 1, no. 2, pp. 180–188, 2021.
- [12] M. R. Anwar and S. Purnama, "Boarding house search information system database design," *International Journal of Cyber and IT Service Management*, vol. 2, no. 1, pp. 70–81, 2022.
- [13] N. Verina and J. Titko, "Digital transformation: conceptual framework," in *Proc. of the Int. Scientific Conference "Contemporary Issues in Business, Management and Economics Engineering*, 2019, pp. 9–10.
- [14] J. Dąbrowska *et al.*, "Digital transformation, for better or worse: a critical multi-level research agenda," *R&D Management*, vol. 52, no. 5, pp. 930–954, 2022.

International Journal of Cyber and IT Service Management (IJCITSM) p-ISSN: 2797-1325 Vol. 4 No. 1 October 2024 e-ISSN: 2808-554X

- [15] K. Kano and E. Dolan, "Data Compression Analysis of Multimedia Video on Demand and DEMAND TV Broadcast Systems on the Network," *International Journal of Cyber and IT Service Management*, vol. 3, no. 1, pp. 48–53, 2023.
- [16] S. Kosasi, I. D. A. E. Yuliani, and U. Rahardja, "Boosting e-service quality of online product businesses through it leadership," in *2022 International Conference on Science and Technology (ICOSTECH)*, IEEE, 2022, pp. 1–10.
- [17] I. Handayani, D. Apriani, M. Mulyati, N. A. Yusuf, and A. R. A. Zahra, "A Survey on User Experience of Blockchain Transactions: Security and Adaptability Issues," *Blockchain Frontier Technology*, vol. 3, no. 1, pp. 160–168, 2023.
- [18] Z. Fauziah, N. P. Anggraini, Y. P. A. Sanjaya, and T. Ramadhan, "Enhancing Cybersecurity Information Sharing: A Secure and Decentralized Approach with Four-Node IPFS," *International Journal of Cyber and IT Service Management*, vol. 3, no. 2, pp. 153–159, 2023.
- [19] N. Azhar, W. F. Wan Ahmad, R. Ahmad, and Z. Abu Bakar, "Factors Affecting the Acceptance of Online Learning among the Urban Poor: A Case Study of Malaysia," *Sustainability*, vol. 13, no. 18, p. 10359, 2021.
- [20] D. O. Sari, R. Putra, and A. Alamsyah, "Does e-service for research and community service boost the performance of university lecturers?," *Journal of Education and Learning (EduLearn)*, vol. 18, no. 1, pp. 261–270, 2024.
- [21] M. Afif, T. Mariyanti, N. Septiani, and E. Dolan, "Factor affecting employee motivation to increase performance of Sharia bank in Indonesia on Islamic perspective," *APTISI Transactions on Management (ATM)*, vol. 7, no. 2, pp. 131–142, 2023.
- [22] R. Azhari and A. N. Salsabila, "Transforming PT Pertamina with Cybersecurity, File Security, and Essential Items," *International Journal of Cyber and IT Service Management*, vol. 3, no. 2, pp. 160–167, 2023.
- [23] K. Bajunaied, N. Hussin, and S. Kamarudin, "Behavioral intention to adopt FinTech services: An extension of unified theory of acceptance and use of technology," *Journal of Open Innovation: Technology, Market, and Complexity*, vol. 9, no. 1, p. 100010, 2023.
- [24] S. Saeed, "Education, Online Presence and Cybersecurity Implications: A Study of Information Security Practices of Computing Students in Saudi Arabia," *Sustainability*, vol. 15, no. 12, p. 9426, 2023.
- [25] H. Benbya, S. Pachidi, and S. Jarvenpaa, "Special issue editorial: Artificial intelligence in organizations: Implications for information systems research," *J Assoc Inf Syst*, vol. 22, no. 2, p. 10, 2021.
- [26] Y. K. Dwivedi *et al.*, "Artificial Intelligence (AI): Multidisciplinary perspectives on emerging challenges, opportunities, and agenda for research, practice and policy," *Int J Inf Manage*, vol. 57, p. 101994, 2021.