Data Mining Methods: K-Means Clustering Algorithms
DOI:
https://doi.org/10.34306/ijcitsm.v3i1.122Keywords:
Data Mining, Clustering, K-Means Clustering AlgorithmAbstract
A data warehouse is a straightforward definition of a database. Data mining technology can be used to process mountains of data in databases to uncover new, fascinating, and useful information.Clustering is an approach to data gathering. As one technique for grouping data into clusters or groups, the K-Means Clustering Algorithm algorithm divides the data into those that share the cluster's traits and those that don't. data into groups, and data into groups, so that data into groups, and data into groups, so that data has the same traits is grouped in the same cluster. Other clusters are formed from data and clusters with distinct properties. additional categories. The knowledge/information gathered in the groups or clusters is helpful to policy consumers in the decision-making process.mact of making decisions.
References
S. Rahayu and J. J. Purnama, “Klasifikasi Konsumsi Energi Industri Baja Menggunakan Teknik Data Mining,” Jurnal Teknoinfo, vol. 16, no. 2, p. 395, 2022, doi: 10.33365/jti.v16i2.1984.
K. P. Sinaga and M. S. Yang, “Unsupervised K-means clustering algorithm,” IEEE Access, vol. 8, pp. 80716–80727, 2020, doi: 10.1109/ACCESS.2020.2988796.
D. F. al Husaeni and A. B. D. Nandiyanto, “Mapping visualization analysis of computer science research data in 2017-2021 on the google scholar database with vosviewer,” International Journal of Informatics Information System …, vol. 3, no. 1, pp. 1–18, 2022.
Mulyati, S. Zebua, M. H. R. Chakim, and Khairul, “Effect of Human Resources Quality, Performance Evaluation, and Incentives on Employee Productivity at Raharja High School,” APTISI Transactions on Management (ATM), vol. 7, no. 1, pp. 1–7, 2022, doi: 10.33050/atm.v7i1.1732.
M. S. Yang and K. P. Sinaga, “A feature-reduction multi-view k-means clustering algorithm,” IEEE Access, vol. 7, pp. 114472–114486, 2019, doi: 10.1109/ACCESS.2019.2934179.
A. Cahyono and Y. D. Nurcahyanie, “Identification and Evaluation of Logistics Operational Risk Using the FMEA Method at PT . XZY,” vol. 5, no. 1, pp. 1–10, 2023.
S. Purnama, Q. Aini, U. Rahardja, N. P. L. Santoso, and S. Millah, “Design of Educational Learning Management Cloud Process with Blockchain 4.0 based E-Portfolio,” Journal of Education Technology, vol. 5, no. 4, p. 628, 2021, doi: 10.23887/jet.v5i4.40557.
D. Shoxboz, “the Essence of Teaching Engineering Computer,” European Journal of Research and Reflection in …, vol. 7, no. 12, pp. 18–23, 2019, [Online]. Available: http://www.idpublications.org/wp-content/uploads/2020/01/Full-Paper-THE-ESSENCE-OF-TEACHING-ENGINEERING-COMPUTER-GRAPHICS-AS-A-GENERAL-TECHNICAL.pdf
C. Yuan and H. Yang, “Research on K-Value Selection Method of K-Means Clustering Algorithm,” J (Basel), vol. 2, no. 2, pp. 226–235, 2019, doi: 10.3390/j2020016.
T. C. Handayanti, A. P. B. Prasetyo, and P. Widianingrum, “Tingkat Kepuasan Dan Hasil Belajar Biologi Dalam Penerapan Media Interaktif Quipper School,” Bioma : Jurnal Ilmiah Biologi, vol. 9, no. 1, pp. 1–12, 2020, doi: 10.26877/bioma.v9i1.6030.
J. Hilton et al., “Identifying Student Perceptions of Different Instantiations of Open Pedagogy,” International Review of Research in Open and Distance Learning, vol. 21, no. 4, pp. 1–14, 2020, doi: 10.19173/IRRODL.V21I4.4895.
M. Savić, M. Ivanović, I. Luković, B. Delibašić, J. Protić, and D. Janković, “Students’ preferences in selection of computer science and informatics studies a comprehensive empirical case study,” Computer Science and Information Systems, vol. 18, no. 1, pp. 251–283, 2020, doi: 10.2298/CSIS200901054S.
A. N. Halimah and H. Abdullah, ““ Student preference towards the utilization of Edmodo as a learning platform to develop responsible learning environments " study,” vol. 1, no. 1, pp. 53–58, 2022.
F. M. Javed Mehedi Shamrat, Z. Tasnim, I. Mahmud, N. Jahan, and N. I. Nobel, “Application of k-means clustering algorithm to determine the density of demand of different kinds of jobs,” International Journal of Scientific and Technology Research, vol. 9, no. 2, pp. 2550–2557, 2020.
P. A. Sunarya, M. Ilmu, M. Administrasi, and K. Tangerang, “The Impact of Gamification on IDU ( ILearning Instruction ) in Expanding Understudy Learning Inspiration,” vol. 1, no. 1, pp. 59–67, 2022.
A. Nur Khormarudin, “Teknik Data Mining: Algoritma K-Means Clustering,” Jurnal Ilmu Komputer, pp. 1–12, 2016, [Online]. Available: https://ilmukomputer.org/category/datamining/
A. Y. Pratama, “Penerapan Teknik Data Mining Untuk Menentukan Hasil Seleksi Masuk Sman 99 Jakarta Untuk Siswa / Siswi Smpn 9 Jakarta Menggunakan Decision Tree,” Jurnal TEDC, pp. 49–54, 2015, [Online]. Available: http://ejournal.poltektedc.ac.id/index.php/tedc/article/download/240/185
V. S. Moertini, “Data Mining Sebagai Solusi Bisnis,” Integral, vol. 7, no. 1, pp. 44–56, 2002.
N. Lutfiani, L. Meria, U. Raharja, and U. E. Unggul, “Utilization of Big Data in Educational Technology,” vol. 1, no. 1, pp. 73–83, 2022.
N. Ramadhona, A. A. Putri, D. Sri, and S. Wuisan, “Students ’ Opinions of the Use of Quipper School as an Online Learning Platform for Teaching English,” vol. 1, no. 1, pp. 35–41, 2022.
G. Alfarsi and A. bin Mohd Yusof, “Virtual reality applications in education domain,” Proceedings - 2020 21st International Arab Conference on Information Technology, ACIT 2020, vol. 1, no. 1, pp. 68–72, 2020, doi: 10.1109/ACIT50332.2020.9300056.
C. S. Bangun, S. Purnama, and A. S. Panjaitan, “Analysis of New Business Opportunities from Online Informal Education Mediamorphosis Through Digital Platforms,” vol. 1, no. 1, pp. 42–52, 2022.
N. N. Azizah and T. Mariyanti, “Education and Technology Management Policies and Practices in Madarasah,” vol. 1, no. 1, pp. 29–34, 2022.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Mohammad Annas, Siti Norida Wahab

This work is licensed under a Creative Commons Attribution 4.0 International License.







